
Algorithm of Suessives RestritionsLinda SmailMarne-la-Vall�ee UniversityFranesmail�math.univ-mlv.frAbstratGiven a bayesian network relative to a set I of disrete random variables, we are interested inomputing the probability distribution P (A=B), where A and B are two disjoined subsets ofI . The general idea of the algorithm of suessives restritions is to manage the suessions ofsummations on all random variables out of the target in order to keep on the target a strutureless onstraining than the Bayesian network, but whih allows saving in memory ; that is thestruture of Bayesian Network of Level Two.1 IntrodutionGiven a bayesian network relative to a set (Xi)i2I of disrete random variables, we are interested in ompu-tation of the probability distribution of a subset A of random variables onditionally to another subset B,where A and B are two disjoined subsets of I . Aording to Bayes theorem : P (xAjxB) = P (xA;xB)PxA P (xA;xB) thusto ompute this onditional probability we need to ompute the probability distribution of XA[B, whih wealled \target". The general idea is to manage the suessions of summations on all random variables Xi,for i 2 (I � (A [ B)) = A [ B.Our aim is to ompute P (xAjxB), for one target A, not as in many studies whih developed some e�etivealgorithms to ompute P (xijxB) for eah i 2 I , this makes the di�erene between our algorithm and thelustering-based algorithms. In this algorithm we do not state on the target any partiular assumption inonnetion with the struture of the bayesian network. The subset A an have more than one variable, andnot speially variables whih belong to the same lique as in (Lauritzen, 1988) where the targets are liquesorganized in a struture of a juntion tree. In other words, in (Lauritzen, 1988), we an ompute P (xAjxB)if A is a subset of variables of the same lique.2 Bayesian network of level twoWe onsider a probability PI of a �nite family (Xi)i2I , of random variables on a �nite spae 
I . Let I be apartition of I and let us onsider a direted ayli graph G on I ; we say that there is a link from J 0 to J 00(where J 0 and J 00 are atoms of the partition I) if (J 0 ; J 00) 2 G. If J 2 I, we note p(J) the set of parents ofJ , that is the set of J 0 suh that (J 0 ; J) 2 G.Let a(J) be the initial subset (anestors) de�ned by J , in other words the set onsisting in J itself and theJ 00 suh as there is a path in G from J 00 to J ; we an identify it with the union of all J 00 suh that J 00 2 a(J).De�nition 1 : The probability PI is de�ned by the Bayesian network of level two (BN2), on I ,(I; G; (PJ=p(J))J2I), if for eah J 2 I, we have the onditional probability PJ=p(J), in other words theprobability of XJ onditioned by Xp(J) (whih, if p(J) = ;, is the marginal probability PJ ), suh as :PI (xI ) = YJ2I PJ=p(J)(xJ=xp(J)):An usual Bayesian network (said of level one : BN1) is a partiular ase of BN2, with the partition of Iinto singletons.



1 2

3, 4, 5

6 7Figure 1: Example of a Bayesian network of level twoDe�nition 2 : Let d(J) be the set (possibly empty) of the lose desendants of J , in other words thehildren of J and, if there are any out of the hildren themselves, the verties loated on a path between Jand one of his hildren.
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6Figure 2: Bayesian network of level twod(1) = f2; f3; 4g; 6g, whih we an write also : d(1) = f2; 3; 4; 6g.3 Algorithme of suessives restritionsLet (I;G; (Pi=p(i))i2I ) be a bayesian network. Given a subset A of I , known as \target", we onsider theproblem of omputing the probability distribution of (Xi)i2A = XA. To solve this problem, we suggest analgorithm said algorithm of suessives restritions. The general idea is to manage the summations that wehave to do relatively to the random variables X` for ` 2 A (A = I �A).3.1 Prinipele of the algorithmeGiven a bayesian network (I;G; (Pijp(i))i2I) and a subset A of I , the general idea of the algorithm ofsuessive restritions is to build a sequene of subsets (I0; : : : ; I`) with ` = Card (I � A), and for eah0 � s � ` a struture of bayesian network of level 2 on Is, noted Rs = (Is; Gs; (PJjp(J))J2Is , whih de�nesPIs , probability ditribution of XIs = (Xi)i2Is , suh that :1. I0 is the initial network (so I0 = I).



2. Eah element of Is whih ontains an element of A is a singleton.3. One the algorithm is performed, I` = A and the probability distribution of (Xi)i2A an be omputedsimply by produt of the onditional probabilities in the bayesian network of level two obtained on I` .
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Figure 3: (a) : Example of BN2. (b) : BN2 resulting after summation over 6 : E6 = f7; 8; 9; 10; 11g.Now let's speify the general step of this algorithm : we start with a BN2, on L � I , R =(I; G; (PJ=p(J))J2I), de�ning PL, where L = [J2I J ; we will obtain at the exit a BN2, on L0 = L � fig,R0 = (I 0; G0; (PJ=p(J))J2I0), de�ning PL0 . We hoose a variable i of A \ L ; aording to what preedes, thesingleton i belongs to I ; this hoie is made in suh a way that i has no desendant in A. Than the BN2 R0has for verties the atoms of the partition I 0, whih are :1. the set of lose desendants of i in R, whih we denote Ei (Ei = d(i)),2. all the atoms of I other than i and those in Ei .The graph G0 results from the graph G in the following way :1. we delete the links (for G) relative to i and to the elements of Ei,2. we keep all other links of G,3. we introdue to Ei a set of parents, p0(Ei), whih inludes : all parents of i in G and all parents ofverties belonging to the lose desendants of i, others than i or those in Ei itself.4. we introdue as hildren to Ei all hildren of verties of R belonging to Ei, others than those in Eiitself.



The probabilisti data assoiated to R0 an be omputed from those assoiated to R in the following way :1. we onserve the probability, onditionally to his parents, for eah vertex suh that the passage from Rto R0 hanges neither itself nor his parents (in other words, eah vertex other than i, those in Ei andthe hildren of those in Ei);2. for eah hild J of Ei (in G), his probability, onditionally to his parents, is preserved by substitutionof Ei to the set of the parents of J (in G) whih belongs to Ei, and we onserve the information thatonly these variables intervene in p0J=Ei .3. we reate the probability of Ei onditionally to p0(Ei), whih an be omputed owing to the followingformulaPEi=p0(Ei)(xEi=xp0(Ei)) = Xxi2
i h � YJ2Ei PJ=p(J)(xJ=xp(J)) � Pi=p(i)(xi=xp(i)) i:Proof :To simplify the notation, we will note Pi for Pxi2
i and, for eah subset B = fb1; : : : ; bmg of L,PB for Pxb12
b1 : : : Pxbm2
bm ; we will omit to write the variables (for example we write PJ=p(J) forPJ=p(J)(xJ=xp(J))). The various objets intervening in this proof may be visualized on the example given in�gure 3 (a).The omputation of PEi=p0(Ei) an be done by using only verties in a(Ei) the initial subset de�ned by Ei,whih inludes p0(Ei) by onstrution ; we deompose a(Ei) aording to the partition (Ei; fig; p0(Ei); Gi),where a�p0(Ei)� = p0(Ei) [Gi. ThenPEi[p0(Ei) = Xi XGi h � YJ2Ei PJ=p(J)� Pi=p(i) � Yk2p0(Ei) Pk=p(k)� � Yh2Gi Ph=p(h) � i:We notie that the index i is present only in �QJ2Ei PJ=p(J)� Pi=p(i) whereas all the ` in Gi may be presentonly in � Qk2p0(Ei) Pk=p(k)� � Qh2Gi Ph=p(h) � soPEi[p0(Ei) = nXi h � YJ2Ei PJ=p(J)� Pi=p(i)io nXGi h � Yk2p0(Ei) Pk=p(k)� � Yh2Gi Ph=p(h)� i o:Sine Pp0(Ei) = PGi h� Qk2p0(Ei) Pk=p(k) � � Qh2Gi Ph=p(h)� i, we getPEi=p0(Ei) = Xi h � YJ2Ei PJ=p(J)� Pi=p(i)i:ReferenesFinn Jensen (1999). An Introdution to Bayesian Networks. UCL Press.Pearl, J. (1986). Fusion propagation and struturing in belief networks. Arti�ial Intelligene 29 (3),241{288.Ste�en Lauritzen, David Spiegelhalter (1988). Loal Computation with Probabilities on GraphialStrutures and their Appliation to Expert Systems. Proeedings of the Royal Statistial Soiety,Series B 50 (2).


